Critical Area 1: Developing understanding of multiplication and division and strategies for multiplication and division within 100.

Domains: Number & Operations in Base Ten, Operations & Algebraic Thinking, Number & Operation-Fractions

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Essential Question(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understandings (U) Students will understand...</td>
<td></td>
</tr>
<tr>
<td>- Place value language as they describe the procedures for adding multi digit numbers.</td>
<td></td>
</tr>
<tr>
<td>- The value of the entire number rather than the value of particular digits (for example 67: 6 and 7 are the digits. The value of the number is obtained by multiplying 6 by 10 as it is in the tens place and 7 by 1 as it is in the ones place and then adding them together 60+7 to get 67.</td>
<td></td>
</tr>
<tr>
<td>- The meaning of multiplication- repeated addition and area.</td>
<td></td>
</tr>
<tr>
<td>- Models are useful in making sense of multiplication.</td>
<td></td>
</tr>
<tr>
<td>- The Associative and Distributive properties to build understanding of multiplication.</td>
<td></td>
</tr>
<tr>
<td>- Patterns through multiplication strategies.</td>
<td></td>
</tr>
<tr>
<td>- The connection between addition and multiplication.</td>
<td></td>
</tr>
<tr>
<td>- The use of groups and arrays to model multiplication and division.</td>
<td></td>
</tr>
<tr>
<td>- The connections between multiplication and division with arrays.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Students will keep considering...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How do you identify patterns to see relationships within the four operations?</td>
</tr>
<tr>
<td>2. How does understanding the properties (commutative, associative, distributive, identity) extend our understanding of the relationships between numbers?</td>
</tr>
<tr>
<td>3. How is the distributive property used to explain 3 X 11 and 3 X 12?</td>
</tr>
<tr>
<td>4. How can using models help you solve a problem using all four operations?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will know (Knowledge)</td>
</tr>
<tr>
<td>- Solve problems involving the four operations, and identify and explain patterns in arithmetic. (3.OA.8; 3.OA.9)</td>
</tr>
<tr>
<td>- Use place value understanding and properties of operations to perform multi-digit arithmetic. (3.NBT.1; 3.NBT.3)</td>
</tr>
<tr>
<td>- Represent and solve problems involving multiplication and division. (3.OA.1; 3.OA.2; 3.OA.3; 3.OA.4)</td>
</tr>
<tr>
<td>- Understand properties of multiplication and the relationship between multiplication and division. (3.OA.5; 3.OA.6)</td>
</tr>
<tr>
<td>- Multiply and divide within 100. (3.OA.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Students will be skilled and be able to (Demonstrate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Models (arrays, equal groups, diagrams, bar model) to solve problems.</td>
</tr>
<tr>
<td>- Use a number line to skip count.</td>
</tr>
<tr>
<td>- Use multiple strategies/properties to solve all four operations.</td>
</tr>
<tr>
<td>- Use base-ten blocks or place value to multiply with multiples of ten.</td>
</tr>
</tbody>
</table>
Critical Area 2: Developing understanding of fractions, especially unit fractions

(fractions with a numerator of 1)

Domains: Numbers and operations - Fractions

| Meaning |
|-----------------|-----------------|
| **Understandings (U)** | **Essential Question (Q)** |

Students will understand that fractions can be

- Part of a whole
- Part of a set
- Represented by an area model
- Represented on a number line

In understanding a fraction as parts of a whole

- The denominator of a fraction names the number of equal parts in a whole.
- The numerator names how many of the parts are being considered.
- Different strategies to compare fractions with the same numerator or same denominator. (which is greater \(\frac{1}{2} \) or \(\frac{1}{3} \) or which is greater \(\frac{4}{5} \) or \(\frac{3}{5} \))
- Dividing equal pieces into the same number of equal parts will result in equivalent fractions.

\[
\frac{1}{2} = \frac{2}{4} = \frac{3}{6}
\]

Students will keep considering...

1. How do you represent a fraction as parts of a whole?
2. How do you represent a fraction as part of a set?
3. How do you show a fraction on a number line?
4. What strategies do you use to rank fractions in order of magnitude?
5. How can you show equivalent fractions given a fraction?
Acquisition

<table>
<thead>
<tr>
<th>Students will know (Knowledge)</th>
<th>Students will be skilled and be able to (Demonstrate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Understand fractions as numbers. (3.NF1; 3.NF.2; 3.NF.3)</td>
<td>- Represent fractions on a number line.</td>
</tr>
<tr>
<td></td>
<td>- Express whole numbers as fractions.</td>
</tr>
<tr>
<td></td>
<td>- Use models to represent fractions.</td>
</tr>
<tr>
<td></td>
<td>- Use multiple strategies to compare fractions.</td>
</tr>
</tbody>
</table>

Critical Area 3: Developing the understanding of the structure of rectangular arrays and of area.

Developing an understanding of representing and interpreting data. Describing and analyzing two-dimensional shapes.

Domains: Measurement, Data and Geometry

Meaning

<table>
<thead>
<tr>
<th>Understandings (U)</th>
<th>Essential Question(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students will understand...</td>
<td>Students will keep considering...</td>
</tr>
<tr>
<td>- Units fill a space.</td>
<td>1. How can you tell time and use measurement to describe the size of an object?</td>
</tr>
<tr>
<td>- Units can be partitions (one inch can be divided into two half inches.)</td>
<td>2. How drawing a picture helps you to solve problems involving area and perimeter?</td>
</tr>
<tr>
<td>- Any point can serve as the origin on a scale.</td>
<td>3. How can you represent and interpret data?</td>
</tr>
<tr>
<td>- The choice of units in relation to the object being measured determines the accuracy of the measure.</td>
<td>4. How can you describe and classify two-dimensional shapes?</td>
</tr>
<tr>
<td>- Area is the amount of space taken up by a two-dimensional object or shape.</td>
<td></td>
</tr>
<tr>
<td>- Perimeter is the distance or length around a two-dimensional shape.</td>
<td></td>
</tr>
<tr>
<td>- Once the area of a rectangle is established it can be used to construct the formula for other polygons.</td>
<td></td>
</tr>
<tr>
<td>- Using quantifiers, such as all, some, or none, and varying drawings helps focus on the attributes of shapes.</td>
<td></td>
</tr>
<tr>
<td>- That bar graphs, picture graphs and line plots can be used to organize record and compare data.</td>
<td></td>
</tr>
</tbody>
</table>
Acquisition

Students will know (Knowledge)

- Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. (3.MD.1; 3.MD.2)
- Represent and interpret data. (3.MD.4)
- Recognize perimeter as an attribute of plane figures and distinguish between linear and area measures. (3.MD.8)
- Understand concepts of area and relate area to multiplication and addition. (3.MD.5; 3.MD.6; 3MD.7)
- Represent and interpret data. (3.MD.3; 3.MD.4)
- Reason with shapes and their attributes. (3.G.1; 3.G.2)

Students will be skilled and be able to (Demonstrate)

- Read, write and tell time to the nearest minute on a digital and analog clock.
- Use a number line to measure, add or subtract time intervals.
- Use multiple strategies to determine time intervals.
- Measure length to nearest \(\frac{1}{2} \) or \(\frac{1}{4} \) inch.
- Estimate and measure liquid volume and measure mass.
- Use multiple strategies to measure and determine perimeter.
- Use multiple strategies to measure and determine area
- Organize and use data from multiple graphs.
- Describe and draw attributes of plane shapes.
- Describe relationships of lines.

Standard for Mathematical Practice (SMP)

MP.1 Make sense of problems and persevere in solving them.

MP.2 Reason abstractly and quantitatively.

MP.3 Construct viable arguments and critique the reasoning of others.

MP.4 Model with mathematics.

MP.5 Use appropriate tools strategically.

MP.6 Attend to precision.

MP.7 Look for and make use of structure.

MP.8 Look for and express regularity in repeated reasoning.